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Estimating Mussel Abundance and Density

2 Step Approach:

1 Fit a detection function, g(x), to our data

I x = distance perpendicular to transect

2 Use information from g(x) to estimate abundance using
Horvitz-Thompson estimators

I Use for simulations

We used a half-normal distribution for our models where

g(x) = exp
»`x2
2ff2

–
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Estimating Detection Parameters

Need proper probability
density function that
integrates to 1 for MLE

f (x) =
g(x)

—

Normalizing Constant —

I Effective Half-Width

— =

Z w
0
g(x)dx

ff = 0:5, — = 0:6, and
w = 1
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Estimating Detection Parameters
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Estimating Detection Parameters

Maximum Likelihood Estimation

I Likelihood Function

Lx = Πni=1f (xi) =
Πni=1g(xi)
—n

= —`nexp
»`Pni=1 x2i

2ff2

–

Find ff that maximizes Lx

ff̂ =

vuutPni=1 x2i
n

I Only when we assume w =1
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Average Probability of Detection
Average Detectability

Pa =
2—L
2wL

=
—

w

Pa = — = 0:606
ff = 0:508

Pa = 0:606
— = 1:818
ff = 1:525
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Estimating Abundance

Horvitz-Thompson Estimator

N̂ =
nX
i=1

1
pi

Where pi is the probability that a detected mussel was
found, thus

p̂i =
aP̂a
A

And plugging back in we have

N̂ =
nA
aP̂a
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Calculating Standard Error of Density

Coefficient of variation

Let D̂ be our value of interest

CV (D̂) =
SE(D̂)

D̂

Thus, rewritten

SE(D̂) = D̂ ˜ CV (D̂)
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Calculating Standard Error of Density

Thus, we write

CV (D̂) =

vuuuut K
L2(K`1)

PK
k=1 l

2
k (nklk `

n
L)2

(n=L)2
+

1
2n

L = total length of transects in survey
K = total number of transects
n = total number of mussels found
nk = number of mussels found on the kth transect
lk = length of of the kth transect (30 meters for all)
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Effects of Changing K and n
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Cause of Variability in cv(D̂)

Multinomial randomization for variation in transects

Assume equal probability
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Lake Burgan
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Fitting Lake Burgan Data to a Model

n = 52 mussels

a = 999 meters2

A = 120; 000 meters2
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Lake Burgan
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Simulations
The variables we controlled in our simulations were:

Region Size: 4000ˆ 30 meters2

Population Size N
Number of Transects K
Detection Scale Parameter ff
Number of Strata
Addition of Hotspots (areas of elevated density)
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Basic Simulation
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Basic Simulation
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How the Simulation Works

x = distance
from transect

Each mussel is
assigned a
probability pi

pi = g(xi)
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How the Simulation Works

Detection ‰
Bernoulli(pi)

Assigned a 1 if
found, 0 if not
found (red X)
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Comparing Simulation Results

There are two results we use to quantify the difference
between sampling designs:

Percent Bias (Accuracy)

ˆ%Bias N̂ =
ˆ̄N ` N
N
ˆ 100%

Coefficient of Variation (Precision)

CV (N̂) =
SE(N̂)

ˆ̄N
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Varying N and ff
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Varying number of transects, K
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Varying number of transects, K
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Stratified Design
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Stratified Design: Correctly Identified
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Stratified Design Simulation
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Stratified Design Simulation
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Stratified Design: Incorrectly Identified

Carleton College Statistics Comps April 3, 2018 30 / 47



Stratified Design Results

Table: How Stratified Designs Effect Estimates

Design n̄ ˆ̄N %BiasN̂ CV (N̂)

Constant K 90 10; 107 1:07% :16
Correctly Identified 105 10; 032 :32% :16
Incorrectly Identified 75 9; 985 `:15% :17
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Stratified Design Results

Table: How Stratified Designs Effect Estimates

Design n̄ ˆ̄N %BiasN̂ CV (N̂)

Constant K 90 10; 107 1:07% :16
Correctly Identified 105 10; 032 :32% :16
Incorrectly Identified 75 9; 985 `:15% :17

A :01 difference in CV (N̂) is a difference in SE of
:01 ˜ 10000 = 100 mussels
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Addition of a Hotspot
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Hotspot Results:Correctly Identified
Infestation Zone
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Hotspot Results: Incorrectly Identified
Infestation Zone
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Simulation Results: Infestation Zone with
Hotspot

CV (N̂) = 0:163 CV (N̂) = :155 CV (N̂) = :222
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Simulation Discussion

Higher n̄ meant more accurate and precise results

I Greater N and ff increase n
Buckland suggests an n of at least 60-80

I %BiasN̂ was not significantly different than 0

Incorrectly identified hotspots can create large
prediction errors
Predicted SE(N̂) was smaller than the actual
distribution of the N̂ values from the 300-500 runs

I SE(N̂) equation is biased
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Experiment on Time

Randomly placed
30 small
marshmallows
within transect

l = 24 meters
w = 5 meters
Timed participants
to see how time
affects estimates
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N̂ Against Time
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n Against Time
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ff Against Time
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Fitted —
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Relationship between ff, —, n, and N̂

N̂ =
nA
aP̂a

P̂a =
—̂

w

N̂ =
nA

a(—̂=w )

N̂ is a function of n and —, which depends on ff
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Experiment Takeaways

Time has a nonlinear relationship with ff, —, and n

Time has a linear relationship with N̂ as a result
Choose a time that maximizes detection
Choose a time that optimizes ff
Increased ff implies increased n
Supports the claim that we can control CV (D̂) using n
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Further Research

Incorporating habitat covariates

Realistic hotspot
More thorough experiment on time
Data limitations
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