Survey Designs for Distance Sampling:
A Study of Zebra Mussels

Alana Danieu, Nick Fredrickson,
Emily Kaegi, Clara Livingston
Advisor: Katie St. Clair

Carleton College

April 3, 2018

Carleton College Statistics Comps April 3, 2018 1/ 47



Agenda

@ Statistical Reasoning

Carleton College Statistics Comps



Agenda

@ Statistical Reasoning
@ Lake Burgan Data

Carleton College Statistics Comps



Agenda

@ Statistical Reasoning
@ Lake Burgan Data
@ Simulations

Carleton College Statistics Comps



Agenda

@ Statistical Reasoning
@ Lake Burgan Data

@ Simulations

@ Time Analysis

Carleton College Statistics Comps



Agenda

@ Statistical Reasoning
@ Lake Burgan Data

@ Simulations

@ Time Analysis

@ Further Research

Carleton College Statistics Comps



Estimating Mussel Abundance and Density

2 Step Approach:
@ Fit a detection function, g(x), to our data

Carleton College Statistics Comps



Estimating Mussel Abundance and Density

2 Step Approach:

@ Fit a detection function, g(x), to our data
» x = distance perpendicular to transect

Carleton College Statistics Comps April 3, 2018 3/ 47



Estimating Mussel Abundance and Density

2 Step Approach:

@ Fit a detection function, g(x), to our data
» x = distance perpendicular to transect

@ Use information from g(x) to estimate abundance using
Horvitz-Thompson estimators

Carleton College Statistics Comps April 3, 2018 3 /47



Estimating Mussel Abundance and Density

2 Step Approach:

@ Fit a detection function, g(x), to our data
» x = distance perpendicular to transect

@ Use information from g(x) to estimate abundance using
Horvitz-Thompson estimators

» Use for simulations

Carleton College Statistics Comps April 3, 2018 3 /47



Estimating Mussel Abundance and Density

2 Step Approach:

@ Fit a detection function, g(x), to our data
» x = distance perpendicular to transect

@ Use information from g(x) to estimate abundance using
Horvitz-Thompson estimators

» Use for simulations

@ We used a half-normal distribution for our models where

2

ag(x) = exp[;;Q }
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Estimating Detection Parameters

@ Need proper probability . g(x)
density function that C
integrates to 1 for MLE §
9(x)
f(x) = =~ n

K E

0 Distance from Transect (x) w
1

0 Distance from Traﬁuéect (x) w

c=0.5 u=0.6, and
w=1
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Estimating Detection Parameters

@ Need proper probability . g(x)
density function that C
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Estimating Detection Parameters

@ Need proper probability g(x)
density function that
integrates to 1 for MLE

-

f(x) = %

Probability of Detection

o

Distance from Transect (x) w

@ Normalizing Constant u

fury

» Effective Half-Width

uw = /OW ag(x)dx

Probability of Detection

o

L
Distance from Traﬁlsect (x)

c=0.5 u=0.6, and
w=1

Carleton College Statistics Comps April 3, 2018 4 /47



Estimating Detection Parameters

1.65
f(x)
1
o = 0.508
g(x) p = 0.606
0 1
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Estimating Detection Parameters

@ Maximum Likelihood Estimation
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Estimating Detection Parameters

@ Maximum Likelihood Estimation
» Likelihood Function

n?:lg(xi) - 7:1 Xlz]

Ly =N f(x;) = pE = u,_”exp[ 552

Carleton College Statistics Comps



Estimating Detection Parameters

@ Maximum Likelihood Estimation
» Likelihood Function

N, g(x) 3 — N x?
L= N7y () = =205 = ”exp[?;’]
@ Find o that maximizes Lx
2
z:7:1 Xi

(o}
I

n
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Estimating Detection Parameters

@ Maximum Likelihood Estimation
» Likelihood Function

nn:]_g(xi) — - Zn:l X'2
I—X = rl?:lf(X,') = IT = U ”exp[#]
@ Find o that maximizes Lx
2
S X

G =
n

» Only when we assume w = o0
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Average Probability of Detection
@ Average Detectability

2uLl

Pa =
2wl w

@ P, =u =0.606
@ 0 = 0.508
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Average Probability of Detection
@ Average Detectability

2uLl

Pa =
2wl w
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Average Probability of Detection
@ Average Detectability

p_2uL _p
2wl w
w=1 w=3
1 1
0 1 3
@ P,=u=0.606 @ P, =0.606
@ 0 = 0.508 o 1 =1.818
@ 0 =1.525
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Estimating Abundance

@ Horvitz-Thompson Estimator

1
\ Pi
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Estimating Abundance

@ Horvitz-Thompson Estimator

@ Where p; is the probability that a detected mussel was
found, thus

1
1 Pi

aP,
A

b =
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Estimating Abundance

@ Horvitz-Thompson Estimator

i 1
=1 Pi
@ Where p; is the probability that a detected mussel was
found, thus
b — aP,
T A

® And plugging back in we have

nA

N=—%
aP;
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Calculating Standard Error of Density

@ Coefficient of variation
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Calculating Standard Error of Density

@ Coefficient of variation

@ Let D be our value of interest

V(D) - SEb(b)
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Calculating Standard Error of Density

@ Coefficient of variation

@ Let D be our value of interest

@ Thus, rewritten
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Calculating Standard Error of Density

@ Thus, we write

cv(iD L2(;<< 1) Z?fl Ll%(n_f o %)2 1
v(b) (n/L) T 2n
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Calculating Standard Error of Density

@ Thus, we write

K K 2/n n
SR 2(e — ny2
A [2(K—1) ~k=1 "k\ [, [ 1
CV(D) J (n/L) + >n

@ L = total Length of transects in survey
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Calculating Standard Error of Density

@ Thus, we write
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Calculating Standard Error of Density

@ Thus, we write

K K 2/n n
SR I2( — ny2
A [2(K—1) k=1 “k\ 7, L 1
CV(D) J (n/L) + >n

@ L = total Length of transects in survey

@ K = total number of transects

@ n = total number of mussels found

@ nx = number of mussels found on the kth transect
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Calculating Standard Error of Density

@ Thus, we write

K K 2/n n
SR I2( — ny2
A [2(K—1) k=1 “k\ 7, L 1
CV(D) J (n/L) + >n

L = total Length of transects in survey
K = total number of transects

ng = number of mussels found on the kth transect

°
°

@ n = total number of mussels found

°

@ Lk = length of of the kth transect (30 meters for all)
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Effects of Changing K and n
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Effects of Changing K and n
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Cause of Variability in cv(D)

Ui - o S Wl — 17 1
V(D) = (n/L)? " 2n

@ Multinomial randomization for variation in transects
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Cause of Variability in cv(D)

Ui - o S Wl — 17 1
V(D) = (n/L)2 " 2n

@ Multinomial randomization for variation in transects
@ Assume equal probability
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Lake Burgan
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Fitting Lake Burgan Data to a Model

@ n = 52 mussels

Parameter Estimate Std. Error CV
(=}
= Hﬁ%\ G 0.508 0.084  0.165
@ | =P, 0.606 0.075 0.123
(=] A
o | %%‘\ D 0000 00199  0.222
e N, 89.584 19.921  0.222
g A 10,760 2,392 0.222
o]
(=1}
g .

0.0 0.2
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Fitting Lake Burgan Data to a Model

@ n=52

@ a = 999 meters?

mussels

Parameter Estimate Std. Error CV

o
-] %N 4 0.508 0.084 0.165
@ QS%% ZAP“ 0.606 0.075 0.123
o | 9\% p 0.090 0.0199 0.222
< N, 89.584 19.921 0.222
= A 10,760 2,392 0.222
o
o
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Fitting Lake Burgan Data to a Model

@ n = 52 mussels

@ a = 999 meters?

@ A = 120,000 meters?

Parameter Estimate Std. Error CV

o
= &%\ I 0.508 0.084 0.165
@ ‘%%&ﬁ il = P, 0.606 0.075 0.123
@ | 9\ p 0.090 0.0199 0.222
o N, 89.584 19.921 0.222
= A A 10, 760 2,392 0.222
o |
o
s T T T T T T

0.0 0.2 0.4 0.6 0.8 1.0
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Lake Burgan
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Simulations

The variables we controlled in our simulations were:

@ Region Size: 4000 X 30 meters?
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Simulations

The variables we controlled in our simulations were:

Region Size: 4000 X 30 meters?
Population Size N
Number of Transects K

Number of Strata

°
°

°

@ Detection Scale Parameter o

°

@ Addition of Hotspots (areas of elevated density)
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Basic Simulation

study area
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Basic Simulation

Example Survey
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How the Simulation Works

@ x = distance
from transect
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How the Simulation Works

@ x = distance
from transect

15 . .0
E .

. e . LY .
§1o o s . @ Each mussel is
g S . assigned a
E 5 . . o probability p;
z R :

o
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Distance from Transect
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How the Simulation Works

@ x = distance
from transect

15 . '.
g .
. L4 . LI .
B e NE . @ Each mussel is
£ Cl . assigned a
< ‘ ' P
3 . .. ) probability p;
c
3 o :
[a]
. .
-1.0 -0.5 0.0 0.5 1.0
Distance from Transect @ p = g( Xi)
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How the Simulation Works

@ Detection ~
Bernoulli(pi)
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How the Simulation Works

@ Detection ~

Bernoulli(pi)

15 X X X
g X ¢ X
2 .. . ' . X o . .
& 10 % |* X @ Assigned a 1 if
g A0 L x found, 0 if not
8 s X x . found (red X)
2 x ¢ 0 x
o

0 * ©

-1.0 -0.5 0.0 0.5 1.0

" Distance from Transect
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Comparing Simulation Results
There are two results we use to quantify the difference

between sampling designs:

@ Percent Bias (Accuracy)
N—N
X 100%

%Biasz =
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Comparing Simulation Results
There are two results we use to quantify the difference

between sampling designs:

@ Percent Bias (Accuracy)
N—N
X 100%

%Biasz =

@ Coefficient of Variation (Precision)
SE(N)

CV(N) = ==
N

Carleton College Statistics Comps
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Varying N and o

True Nvs % Bias(lQI)
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Varying number of transects, K

% Bias(N)
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Varying number of transects, K
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Stratified Design

Total Population
2 !500 10,000

Infestation
Zone
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Stratified Design: Correctly Identified

Correctly Identified Infestation Zone: 16 Transects

Total Population
2 5 0 10,000

Infestation
Zone
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Stratified Design Simulation

study area
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Stratified Design Simulation

Example Survey
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Stratified Design: Incorrectly Identified

Incorrectly Identified Infestation Zone: 8 Transects

Total Population
10,000

Infestation
Zone
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Stratified Design Results

Table: How Stratified Designs Effect Estimates

Design n N %Biasy CV(N)
Constant K 90 10, 107 1.07% .16
Correctly Identified 105 10, 032 .32% .16
Incorrectly Identified 75 9, 985 —.15% 17
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Stratified Design Results

Table: How Stratified Designs Effect Estimates

Design n N %Biasy CV(N)
Constant K 90 10, 107 1.07% .16
Correctly Identified 105 10,032  [:32% .16

Incorrectly Identified 75 9, 985 - A7

A .01 difference in CV(N) is a difference in SE of
.01 % 10000 = 100 mussels
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Addition of a Hotspot
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Hotspot Results:Correctly Identified
Infestation Zone
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Hotspot Results: Incorrectly Identified
Infestation Zone
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Simulation Results: Infestation Zone with
Hotspot
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Simulation Discussion

@ Higher n meant more accurate and precise results
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Simulation Discussion

@ Higher n meant more accurate and precise results
» Greater N and o increase n
@ Buckland suggests an n of at Least 60-80
» %Biasz was not significantly different than 0
@ Incorrectly identified hotspots can create Large
prediction errors
@ Predicted SE(N) was smaller than the actual
distribution of the N values from the 300-500 runs
» SE(N) equation is biased
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Experiment on Time

@ Randomly placed
30 small
marshmallows
within transect
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Experiment on Time
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Experiment on Time

@ Randomly placed
30 small
marshmallows
within transect

@ [ = 24 meters
® w = 5 meters
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Experiment on Time

@ Randomly placed
30 small
marshmallows
within transect

@ [ = 24 meters

@ w =5 meters

@ Timed participants
to see how time
affects estimates
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N Against Time

N Against Total Time (Min)
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n Against Time

Mussels found (n) Against Total Time (Min)

304

20+

Mussels Found (n)

101

25 5.0 75 1044
Total Time (Minutes)

Carleton College Statistics Comps



o Against Time

Fitted Sigma Against Total Time (Min)
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Fitted u

u Against Total Time (Min) Effects of o on u
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~

Relationship between o, w, n, and N

Carleton College Statistics Comps



N

Relationship between o, w, n, and N
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N

Relationship between o, w, n, and N
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N

Relationship between o, w, n, and N

N is a function of n and w, which depends on ¢



Experiment Takeaways

® Time has a nonlinear relationship with o, w, and n
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Experiment Takeaways

® Time has a nonlinear relationship with o, w, and n

® Time has a Linear relationship with N as a result

@ Choose a time that maximizes detection

@ Choose a time that optimizes o

@ Increased o implies increased n

@ Supports the claim that we can control CV(f)) using n
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Further Research

@ Incorporating habitat covariates
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Further Research

@ Incorporating habitat covariates
® Realistic hotspot
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Further Research
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Further Research

@ Incorporating habitat covariates

® Realistic hotspot

@ More thorough experiment on time
@ Data Limitations
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